The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  2  X  1  X
 0 2X+2  0 2X+2  0 2X+2 2X  2  0 2X+2  0 2X+2 2X 2X+2  0  2  0  2 2X  2  0 2X 2X+2 2X+2  0 2X+2 2X  2  0 2X  2  0 2X 2X+2 2X+2 2X+2 2X+2 2X+2
 0  0 2X  0  0  0 2X  0  0  0  0 2X 2X 2X 2X  0 2X 2X  0 2X  0 2X  0  0  0 2X  0 2X  0  0  0 2X 2X 2X 2X 2X  0  0
 0  0  0 2X  0  0  0 2X  0  0 2X  0 2X 2X 2X  0 2X  0 2X 2X  0 2X 2X 2X 2X 2X 2X 2X 2X 2X  0  0  0 2X 2X  0 2X  0
 0  0  0  0 2X  0 2X  0  0 2X  0 2X  0  0 2X 2X  0 2X 2X  0 2X 2X 2X 2X 2X 2X 2X 2X 2X  0 2X 2X  0 2X 2X 2X  0  0
 0  0  0  0  0 2X  0 2X 2X 2X 2X 2X  0 2X 2X  0 2X  0 2X  0 2X  0  0 2X  0 2X  0 2X 2X 2X 2X 2X 2X 2X  0 2X 2X 2X

generates a code of length 38 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 34.

Homogenous weight enumerator: w(x)=1x^0+57x^34+16x^35+50x^36+240x^37+307x^38+240x^39+39x^40+16x^41+47x^42+5x^44+5x^46+1x^68

The gray image is a code over GF(2) with n=304, k=10 and d=136.
This code was found by Heurico 1.16 in 2.14 seconds.